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Finite amplitude instability of second-order fluids 
in plane Poiseuille flow 

By LARRY V. McINTIRE A N D  C. H. L I N  
Department of Chemical Engineering, Rice University 

(Received 31 March 1971) 

The hydrodynamic stability of plane Poiseuille flow of second-order fluids to 
finite amplitude disturbances is examined using the method of Stuart, and 
Watson as extended by Reynolds & Potter. For slightly non-Newtonian fluids 
subcritical instabilities are predicted. No supercritical equilibrium states are 
expected if the entire spectrum of disturbance wavelengths is present. Possible 
implications with respect to the Toms phenomenon are discussed. 

1. Introduction 
The problem of hydrodynamic stability and the description of the perturbed 

flow is an area of importance to both theoretical fluid mechanics and practical 
engineering. The increasing use in plant situations of non-Newtonian fluids has 
added a new dimension to the problem. A well-known, but as yet not sufficiently 
explained, example in this area is the reduction of frictional pressure drop in 
pipeline flow brought about by the addition of very low concentrations of certain 
high molecular weight polymers to the flowing stream (the Toms phenomenon, see 
Toms (1948)). One postulated explanation of the drag reduction was that the 
transition from laminar flow was delayed by fluid viscoelastic properties. Though 
this transitional delay is possible in some flows (see Denn & Roisman 1969; Denn 
& Ginn 1969; McIntire & Schowalter 1970) other analyses have shown the 
opposite effect (see Chun & Schwarz 1968; Datta 1964; Walters & Thomas 1964). 
Experimental data (Metzner & Park 1964; Paterson & Abernathy 1970; Savins 
1969; Seyer 1970; Virk & Merrill 1969; White 1970) seem to indicate that while 
there may be a delay in the transition region, most of the drag reduction occurs 
at fairly large Reynolds numbers where disturbances are no longer infinitesimal. 
The object of the paper is to study the nonlinear stability of plane Poiseuille flow 
of a slightly viscoelastic fluid. Plane Poiseuille flow is studied rather than 
Poiseuille flow because the method used involves the expansion of the nonlinear 
problem in terms of the eigenfunctions of the linearized stability problem (Eckhaus 
1965). For Poiseuille flow, like plane Couette flow, no neutrally stable eigen- 
functions for the linearized stability have yet been found, even for the 
Newtonian problem. 

The technique used here to study the nonlinear stability problem was first 
developed in the work of Stuart (1958,1960) and Watson (1960). Later, Reynolds 
& Potter (1967) proposed an extension and modification of the method of Stuart 
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274 L. V .  McIntire and C. H .  Lin 

and Watson. They also carried out the numerical calculations for plane Poiseuille 
flow and for a combination of plane Poiseuille and plane Couette flow for a 
Newtonian fluid. The nonlinear analysis ultimately involves an equation for the 
amplitude A of velocity disturbance of the form 

(1.1) dA/dt = &)A + a(')A3 + . . . . 
The first constant coefficient do) is yielded by linearized stability analysis as an 
eigenvalue of the Orr-Sommerfeld problem. The flow is stable to infinitesimal 
disturbances if d o )  < 0 and is unstable t o  infinitesimal disturbances if do) > 0. 
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FIGURE 1. The co-ordinate system. 

However, a finite amplitude disturbance might produce subcritical instability or 
supercritical equilibrium if the contribution of nonlinear terms outweighs the 
a@) term. Especially in the case a(O) = 0, corresponding to the neutral stability 
curve of linearized theory, the sign of d2) determines whether the disturbances 
grow or decay. 

The linearized stability analysis of plane Poiseuille flow of slightly viscoelastic 
fluids has been carried out by Chun & Schwarz (1968) and Bernstein & Tlapa 
(1970). The constitutive equation used in the work of Chun & Schwarz is the 
Coleman-No11 model of a second-order fluid, which is given by 

S +PI = a, A, + a1(A1)' + a2 A,, (1.2a) 

where a. 2 0, a, 2 0 and a2 6 0 are material constants, S is the stress tensor, 
p is the arbitrary isotropic pressure, I is the unit tensor and the Ai are the Rivlin- 
Ericksen tensors, defined by 

A, = ( V V ) ~  + VV, (1.2b) 

A2 = gA1/.%+ (A,)', ( 1 . 2 4  

where v is the velocity vector a n d 9 / 9 t  is the Jaumann derivative. This constitu- 
tive equation is also used in the present paper. The co-ordinate system is shown 
in figure 1. 
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2. Formulation 

co-ordinates are given by 
The two-dimensional equations of motion and of continuity in Cartesian 

avilaxi = 0. (2.2) 

The subscript summation convention is invoked throughout the paper, except 
where noted. From (1.2) one obtains 

asji/axj = aovi, jj + al[(vm, i + vi, m )  urn, jj + (urn, ij + vi, mj) (vj, m + urn, j)l 
+ ad(a/at) (vi,  jj) + 2vm, j(vj, im + vi, jm) + vmvi,rnjj 

+ 2~i,,j~j,m+~Ui,m~m,jil -aPlaxi* (2-3)  

All the variables of the problem are made dimensionless by using h, the half- 
width of the channel, and u,, three halves of the bulk average velocity, viz. 

Then the characteristic Reynolds number and non-Newtonian parameters P1 
and will be defined by 

R = u,hp/ao, P1 = alum/aoh, P2 = a2u,/aOh. (2.5) 

e = C121+Wt, = U ( A ) ,  A = ~ ( t ) ,  y = x2,  (2.6) 

Introducing the new variables 

where a is the wavenumber and w is the frequency of the basic wave, the equation 
of continuity becomes 

av, av, 
ae ay 

a-+- = 0. 

This suggests the introduction of the stream function $ defined by 

a$/ay = awl, a$lao = -v2. (2.8) 

From (2.1), (2.3) and (2.8) the vorticity equation is obtained by cross-differentia- 
tion and elimination of the pressure terms. The equation is 

where (2.9b) 

(2.9 c )  

18-2 
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The boundary conditions on $ are 
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a$/ae = a$/ay = o a t  y = 1.  (2.9d) 

It is interesting to note that the first non-Newtonian parameter p1 does not appear 
in the vorticity equation for the two-dimensional problem. The solution which is 
periodic in 0 is sought, that is, such that $ may be expanded in a Fourier 
series of 8: 

Here the summation is over all non-negative integers and '%?(k) is the complex 
conjugate of Y@). By substituting (2.10) into (2.9) and equating the coefficients 
of the same exponential, an infinite set of coupled nonlinear partial differential 
equations is obtained. The coefficient of eike yields 

$(A,  y, 0) = YCk) eik0 + q ( k )  (2.10) 

where 

I {I if k = 0, 

if k $ 0 .  = lo 

(2.11 a)  

(2.11 b)  

(2.11c) 

(2.11 a) 

The nonlinearity and coupling of the equations would make their exact solution 
difficult. Therefore an approximate solution as a power series in the amplitude A 
is sought; that is 

where the superscript summation convention represents a sum over all n 3 k .  
Of course this approximation will be valid only if IA I is small. The terms dA/dt 
and w + ( d w / d A )  ( t  dA ld t )  are also approximated by a power series, i.e. 

(2.13) 

(2.14) 

Y("(A,y)  = A W k .  "'(y), (2.12) 

A-1 d A / d t  = a@) + A&) + AZa(2) + . . . = A"a(", 

w +  ( d s / d A )  ( t d A / d t )  = b(O)+Ab(l)+ ... =A%(%). 
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Substituting (2.12)-(2.14) into (2.11) and equating the terms of the same order 
gives an infinite set of equations for qSk7 @. These equations are then rearranged 
by collecting the terms involving #k,n), and replacing the terms involving $(O, O) by 
the basic laminar velocity U according to the relation 

= 2a-1D$(03 0) = 2a-1DqqO. O ) ,  (2.15) 

where D = d/dy. The final set of equations may be written as 

L,, #k. n) = iac(n-l)GS,, + H,, (no sum). ( 2 . 1 6 ~ )  

Here Skj is the Kronecker delta, the operator L,, is defined by 

L,, = i k [  - i (n/k) do)+ b(O) + au] [D2 - a2k2 - (P2/R) (D2 - k2012)2] 

-a(D2U-(P2/R)D4U)-(1/R) ( D 2 - k 2 ~ 2 ) 2  (2.16b) 

and the other terms are defined by 
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The coeEcients do) and bt0) are related to the conventional eigenvalues of the 

linearized problem by b(0) = -ac t -9  a(@ = ac,. (2.18) 

The mean velocity profile of the basic flow is the same as for a Newtonian fluid, i.e. 
(2.19) 

It is then easily seen that the operator in (2.17 a)  is even, thus its eigensolutions 
can be separated into even and odd modes. As in the Newtonian fluid problem, 
the most dominant eigenvalue of (2.17) is with even mode. Therefore only the 
symmetric disturbance will be considered here. The boundary conditions for 
even $(l* l) are replaced by 

Since any multiple of an eigenfunction is also a solution of (2.17), # l p l )  can be 

If qY1jl) is known, the higher order problems can be solved sequentially. By 

- 
u = (1-yZ). 

@$(k 1) = 0 3 $ ( L  1) = 0 at y = 0. (2.20a)  

normalized according to $(i,i) = 1 at = 0. (2.20 b) 

considering the interaction of nonlinear terms it can be shown that 

$(k,n) = 0 if k + n  = odd, (2.21 a)  

and that 
odd for even n, 

even for odd n. 
@k, n) is (2.21 b )  

This provides the central boundary conditions for the higher order problems. 

3.1. Linear problems 3. Results 

Chun & Schwarz (1968) have carried out numerical calculations for the linearized 
problem and have obtained neutral stability curves. Unfortunately, the last two 
terms in the left-hand side of (2.17 a )  were omitted in their disturbance equation. 
A numerical scheme used by Landahl & Kaplan (1965) is employed here to 
integrate equation (2.17). This numerical procedure was tested by calculating 
results for the special case p2 = 0 (Newtonian fluid) and comparing these with 
the numerical results obtained by Thomas (1953). While Thomas found 

c = 0.2375259 + 0.0037404i 

for the case R = 10 000, a = 1.0, the present calculation gave 

c = 0.2375267 + 0.0037399i. 

The numerical values of the eigenfunction were essentially identical. 
The curves of neutral stability ( d o )  = 0) are shown in figure 2 for different 

values of p2. They show quantitatively different but qualitatively similar results 
t o  the ones obtained by Chun & Schwarz. The presence of the non-Newtonian 
parameter p2 moves the neutral stability curve toward the left and therefore 
decreases the critical Reynolds number in linear stability analysis. 

The eigenvalue problem (2.17) can also be solved by approximation methods 
such as the Galerkin method (see Finlayson 1968) and the variational method 
(Lee & Reynolds 1967). Since the adjoint eigenvalue problem to (2.17) has the 
same boundary conditions, these two methods are essentially equivalent and 
would yield the identical results. Although these approximation methods yield 
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less accurate eigenvalues and eigenfunctions they give the spectrum of the 
eigenvalues, which is important in finding the most dominant eigenvalue. The 
Galerkin method is used here to examine the eigenvalue spectrum of the problem. 
It is observed that for non-Newtonian fluids, if R is fixed and a is increased, then 
there is an eigenvalue which changes from extremely stable to extremelyunstable. 

1.4 

I 1 I I I I I I I 

10 50 90 130 17U 210 250 290 330 

R x 

FIGURE 2. Neutral stability curves for the linearized case. 

This could be explained as follows (see Shen 1964). Multiplying the (2.17) by the 
conjugate eigenfunction @1) and integrating it from y = - 1 to y = + 1, one 
obtains 

( 3 . 1 ~ )  

( 3 . l b )  

(3 .1  c )  

(3 .1  d )  
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It can be easily seen that when p2 = 0 the denominator on the right-hand side 
of (3.1 a)  will never vanish. However, if p2 <: 0, which is the case for a second-order 
fluid, then an eigenfunction such that the denominator vanishes may exist. This 
will cause the eigenvalue associated with it to behave abnormally. Eventually, 
it is found that for any given negative value of p2 there always exists an abnor- 
mally behaved eigenvalue for any R and a, if enough terms of approximation are 
adopted. This has caused some argument about the existence of a neutral 
stability curve (see Craik 1968; Platten & Schechter 1970) and should be con- 
sidered as a shortcoming of using the constitutive equation (1.2 a)  for a slightly 
viscoelastic fluid. However, in the present paper, only the normally behaving 
eigenvalues (i.e. those for which the denominator does not vanish) are considered. 

3.2. Nonlinear analysis 

Once $(l, l) is known, the right-hand side of the equations for $(O* 2, and $@, 2, can 
be calculated. These inhomogeneous linear equations are then integrated by 
Landahl & Kaplan's scheme to give qVo. 2, and #(2, 2). Before moving on to calculate 
$(l, 3), the constant d2) has to be determined. This can be done with the help of the 
adjoint eigensolution. Stuart (1960) and Reynolds & Potter (1967) showed that 
c(n) can be calculated according to the relation 

where @ is the solution of the adjoint eigenvalue problem to (2.16), i.e. 

L&@ = 0, B*@ = 0, (3-3) 

where Le is the adjoint operator to Lll, and B" are the corresponding boundary 
conditions. L& can be easily obtained by integration by parts and is given by 

LT1 = (a@) + ib@) + iau) [D2 - a2 - (P,/R) ( 0 2  - a2)2] + 2DGD 

- 1/R (D2-a2)2-  (iap2/R) (D4U-- 4D3;E2D- 6D2UO2+ 2a2D2;E2). (3.4) 

The boundary conditions B* are identical with those given by (2.17b).  The 
adjoint eigenfunction @ is also integrated by using Landahl & Kaplan's scheme. 
The adjoint eigenvalue should be identical with the original problem and this 
serves as a criterion for the accuracy of the numerical scheme. The numerical 
calculation using a single precision program was carried out on a Burroughs-5500. 
The results for a Newtonian fluid are given in table 1 a,nd are consistent with the 
ones obtained by Reynolds & Potter. The results for two non-Newtonian cases 
(p2 = - 0.1, - 0.5) are summarized in tables 2 and 3. 

The results reveal that for plane Poiseuille flow the presence of the non-New- 
tonian parameter p2 does not, have a qualitative effect on the value of c@). In the 
neighbourhood of the critical point, a@) appears to be positive for both p2 = - 0.1 
and p2 = - 0.5. Therefore a subcritical instability is also conjectured for the non- 
Newtonian fluid. While on the upper branch of the neutral stability curve is 
positive and becomes larger when the fluid becomes more non-Newtonian, a(z) is 
negative on the lower branch and becomes smaller when p2 decreases. Hence 
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R CL. 

30000  1.0067 
20000  1.0471 
12000  1.0865 
90001 1.097 
75001 1.094 
5 772.2?$: 1.02071 
7 5 0 0 1  0.875 
9OOOf 0.823 

1 2 0 0 0  0.7576 
20000  0.6673 
30000  0.6095 

5 250T 1.02071 
6 OOOt  1.02071 

20000  0.750 
20000 0.800 
20000  0.834 
20000 0.867 
20000  0.900 
30000  0.7088 
30000  0.8081 
30000  0.9074 

Cr 

0- 1948 
0.2132 
0.2377 
0-2515 
0.2597 
0-2640 
0.2345 
0.2203 
0.2007 
0.1714 
0.1517 
0.2684 
0.2263 
0.1823 
0.1866 
0.1926 
0.1964 
0.2000 
0.1645 
0.1764 
0.1868 

ci 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
o*oooo 
0~0000 
0~0000 
0~0000 
0-0000 
0.0015 
0.0005 
0.00220 
0.00727 
0.00782 
0.00786 
0.00742 
0.00696 
0.00915 
0.00675 

a ( 2 )  

430.0 
314.8 
195.3 
136.1 
101.2 

- 4.91 
- 10.63 
- 15.03 
- 18.80 
-20.18 

29.67 

33.03 
29.83 

- 44.35 
- 31.30 
- 15'05 

6.47 
34.46 

- 57.67 
- 8.59 
115.9 

b(2) 

- 809.8 
- 600.0 
- 398'0 
- 309.0 
- 258.0 
- 165.9 
- 129.0 
- 133.8 
- 120.9 
- 124.9 
- 132.9 
- 163.5 
- 170'0 
- 160.0 
- 188.5 
- 209.6 
- 232.2 
- 258.6 
- 181.4 
- 251.1 
- 362.1 

Kl 
- 18.36 
- 14.84 
- 10.61 
- 8.36 
- 6.94 
- 4.23 
- 3.20 
- 3.06 
- 2.972 
- 2.952 
- 2.998 
- 5.23 
- 4.08 
- 2'422 
- 2.761 
- 3.036 
- 3.354 
- 3.763 
- 2.523 
- 3.332 
- 4.942 

K ,  
- 28.70 
- 21'91 
- 13.24 
- 8.57 
- 5.96 
- 2.70 
- 3.99 
- 4.61 
- 5.279 
- 6.067 
- 6.494 
- 2.51 
- 2.78 
- 4.633 
- 4.46 
-4.816 
- 5.608 
- 6.907 
-4'816 
- 6.065 
- 12.54 

Data from Reynolds & Potter. $ Critical point 

TABLE 1. Summary of results for Newtonian fluid (pa = 0) 

K ,  
907.1 
666.4 
414.5 
239.5 
214.6 

66.0 
- 2.61 
- 13.59 
- 2 1 4 2  
- 28.59 
- 30.86 

73-8 
66.6 

- 81.66 
- 55.4 
- 22.25 

21.90 
79.58 

- 108.0 

249.4 
- 7.784 

R U 

30 000 1.0139 
20000  1.0575 
12000  1.1036 
9 0 0 0  1.1212 
7 5 0 0  1.1265 
6 0 0 0  1.1209 
4 8 8 6 1  1.0501 
6 000 0.9186 
7 500 0.8505 
9 000 0.8057 

1 2 0 0 0  0.7461 
20000  0.6607 
30000  0.6050 
5000 1.050 
4500 1.050 

20000  0.750 
20000  0.800 
20000 0.834 
20000 0.867 
20000 0.900 
30000  0.7088 
30000 0.8081 
30000  0.9074 

cr 

0.1948 
0.2134 
0.2384 
0.2530 
0.2620 
0.2723 
0,2751 
0.2494 
0.23 11 
0.2178 
0.1991 
0.1704 
0.1511 
0.2738 

0.1822 
0.1884 
0.1924 
0.1962 
0-1998 
0.1645 
0.1762 
0.1865 

0.2788 - 

& ci 

0.0000 438.1 
0.0000 326.1 
0.0000 210.5 
0.0000 154.8 
0~0000 122-0 
0.0000 82.42 
0.0000 25.88 
0~0000 - 4.50 
0.0000 - 11-79 
0.0000 - 14.94 
0.0000 - 17.78 
0.0000 - 20'15 
0.0000 - 21.04 
0.00025 26.25 

.0.00078 26.57 
0'00611 - 47.74 
0.00790 - 34.43 
0.00847 - 18.18 
0.00852 3.161 
0.00810 30.61 
0.00742 - 60.26 
0.00965 - 11.03 
0.00730 110.7 

K ,  b(2) 

- 829.4 - 19.57 
- 618.8 - 16.06 
- 416.5 - 11'79 
- 327.1 - 9.495 
- 277.7 - 8.089 
- 222.1 - 6.382 
- 153.6 -4.186 
- 121.9 - 3.194 
- 114.9 - 3.007 
- 112.6 - 2.936 
- 112'4 - 2.891 
- 118.7 - 2'906 
- 127.7 - 2.966 
- 155.7 - 4.052 
- 149.6 - 4.639 
- 157.0 - 2.426 
- 185.5 - 2.778 
- 206.3 - 3.052 
- 228.4 - 3.367 
- 253.2 - 3.765 
- 178.7 - 2.541 
- 248.0 - 3,355 
- 354.3 - 4.926 

K2 K3 

-31'72 927.6 
-25.07 693.3 
-16.37 449.1 
- 11.64 330.8 

-8.809 260.9 
-5.622 176.8 
-2.885 58.76 
- 3.833 - 1.976 
- 4.575 - 15.99 
- 5.021 - 21.93 
- 5.548 - 27.10 
-6.189 - 31.20 
- 6.560 - 32.55 
-2.958 59.51 
-2.717 60.49 
- 4.774 - 88.28 
- 4.719 - 61.80 
- 5.169 -28.13 
-6.063 15.75 
-7.470 72.4 
-4.945 - 113.0 
- 6.440 - 12.25 
-1.325 239.6 

t Critical point. 

TABLE 2. Summary of results for non-Newtonian fluid I (p2 = - 0.1) 
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a finite amplitude equilibrium would be possible only if the disturbance could 
be limited to very low wavenumbers. For a fixed R (for example R = 20000), 
starting at the lower neutral stability point where a@) is negative, as a increases 

first descends to a minimum and then increases and becomes positive when 
a exceeds a certain value. The variation of a@) with respect to a is illustrated in 
figure 3. The constants K,, K,, and K,, which are also given in tables 1-3, 

R 
9000 
6000 
3000 
15797 
3000 
6000 
9000 
1400 
1800 

a Cr Ci K,  K2 6'2) 

1.210 0.2556 0.0000 214.4 - 398.7 - 16.23 - 29.36 
1.262 0.2796 0.0000 158.7 - 295.9 - 13.09 - 22.90 
1.337 0.3242 0.0000 85.53 -173.5 - 8.169 - 12.85 
1.280 0.3602 0.0000 11.68 - 95.37 - 3.501 - 4.736 
0.9847 0.2902 0.0000 - 21.40 - 70.81 - 2.562 - 5.299 
0'8255 0.2367 0-0000 - 23.32 - 73.18 - 2.551 - 5.795 
0.7530 0.2104 0.0000 - 23.30 - 78.76 - 2.599 - 6.027 
1.280 0.3679 -0.00108 6.14 - 87.99 - 3.431 -4.420 
1.280 0.3519 0.00093 18-83 - 103.9 - 3.683 - 5-287 

7 Critical point. 

TABLE 3. Summary of results for non-Newtonian fluid I1 (p  = - 0.5) 

K3 
474.4 
353.4 
192.1 

31.60 
- 34.94 
- 38.30 
- 37-96 

20-13 
46.63 

40 

30 

20 

10 

0 a 

-10 

- 20 

- 30 

- 40 

- 50 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 

a 

FIGURE 3. The finite amplitude correction as a function of wavenumber at  
a Reynolds number of 20000. 
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represent the contributions to a@) due to the following three physical processes: 
(i) the distortion of the mean motion ( K J ;  (ii) the generation of the harmonic of 
the fundamental (K2);  (iii) the distortion of the y-dependence of the fundamental 
(K,). These three constants are defined by equations (6.3)-(6.5) in Stuart (1960). 
They are related to a@) by 

2a(2) = K,  + K ,  + K,. (3-5) 

The normalization procedures imply that the total mean flow is held constant. 
In  this case the mean pressure gradient in 0 direction does change with time. The 
following expansion is adopted: 

(3.6) - ap/a0 = n(k) eike + e-ike. 

By substituting (2.8) and (3.6) into equations of motion it can be shown that for 
the mean pressure gradient (k = 0) 

and an(o)/ay = 0. (3.7b) 

Since the functions Y(i) have been expanded in a power series in A ,  from (3.7), 
1T(O) can also be expanded into a power series in A ,  i.e. 

(3.8) n(0) = n(0, n)A" 

where the do*n) are constant and independent of y because of (3 .7b ) .  Putting 
(2.13) and (3.8) into (3.7a),  one obtains 

ma(n-m) (D@% m) - ( P z f  R) D3#O* "9 
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in table 4. The presence of p2 tends to increase the O(A2) contribution to the mean 
pressure gradient. Pipkin and Walters (see Pipkin 1964a, b; Jones & Walters 
1967; Walters & Townsend 1970) have examined the effect of pressure oscillation 
of non-Newtonian fluids in Poiseuille flow. 

R 

7 500 
7 500 

20 000 
20 000 
30 000 
30 000 
40 000 
40 000 
40 000 
40 000 
40 000 

P Z  

0 
-0.1 

0 
- 0.1 

0 
- 0.1 

0 
0 

- 0.1 
- 0.1 
-0.1 

a 
1.0944 
1.1265 
0.867 
0,867 
0.6095 
0.6050 
0.5737 
0.9755 
0-9755 
0.5401 
0.9810 

ci 
0~0000 
0~0000 
0.00786 
0.00852 
0~0000 
0~0000 
0~0000 
0~0000 
0.00052 
0~0000 
0~0000 

7P. x 100 

2.042 
2.123 
3.393 
3.430 
1.582 
1.621 
1.510 
1.481 
2.855 
1.527 
1.512 

TABLE 4. O(A2) contribution to  mean pressure gradient 

4. Conclusions 
The behaviour of slightly viscoelastic fluids in plane Poiseuille flow with finite 

amplitude disturbances is not greatly different from that of Newtonian fluids. 
Subcritical instabilities are still predicted and, if the entire spectrum of disturb- 
ance wavelengths is present, no supercritical equilibrium flows appear possible. 
This would indicate that the explanation of drag reduction in viscoelastic fluids 
is to  be found in the effect of non-Newtonian parameters on the flow far from the 
neutral stability curve (in the eddying turbulent field). No dramatic effects of 
non-Newtonian parameters on the creation of equilibrium flows for small but 
finite disturbances are found. 

At constant mean flow rate the effect of the perturbation oscillation in plane 
Poiseuille flow is to increase the average pressure gradient for second-order 
fluids -relative to the Newtonian value. 

This work was partially supported by National Aeronautics and Space 
Administration Grant NGL 44006 and National Institute of Health Grant 
5-S04-RR06136-04. 
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